Quantum Computing Leap: 10-fold Boost in Stability Achieved with Dressed Qubit

By | Oct 18, 2016 06:44 PM EDT
Dressed qubit

Scanning electron microscope image of a device showing the positions of the tuning gates (red); the microwave antenna (blue) and the single electron transistor used for spin readout (yellow).(Photo : Guilherme Tosi & Arne Laucht/UNSW)

A new quantum bit called a "dressed qubit" has remained in a stable superposition for 10 times longer than previously achieved, dramatically expanding the time during which calculations will be performed in future silicon quantum computers.

Australian engineers at the University of New South Wales (UNSW) created the new quantum bit after a decade-long effort.

Like Us on Facebook

This dressed qubit is made up of the spin of a single atom in silicon, and merged with an electromagnetic field retains quantum information for much longer that an "undressed" atom.

This feature opens up new avenues to build and operate the superpowerful quantum computers of the future.

The result by a team appears in the online version of the international journal, Nature Nanotechnology.

"We have created a new quantum bit where the spin of a single electron is merged together with a strong electromagnetic field," said Arne Laucht, a Research Fellow at the School of Electrical Engineering & Telecommunications at UNSW, and lead author of the paper.

"This quantum bit is more versatile and more long-lived than the electron alone, and will allow us to build more reliable quantum computers."

Building a quantum computer has been called the "space race of the 21st century."

This, because it's a difficult and ambitious challenge with the potential to deliver revolutionary tools for tackling otherwise impossible calculations, such as the design of complex drugs and advanced materials, or the rapid search of massive, unsorted databases.

The speed and power of a quantum computer lie in the fact that quantum systems can host multiple superpositions of different initial states a computer treats as inputs which, in turn, are all processed at the same time.

"The greatest hurdle in using quantum objects for computing is to preserve their delicate superpositions long enough to allow us to perform useful calculations," said Andrea Morello, leader of the research team and a Program Manager in the Centre for Quantum Computation & Communication Technology (CQC2T) at UNSW.

"Our decade-long research program had already established the most long-lived quantum bit in the solid state, by encoding quantum information in the spin of a single phosphorus atom inside a silicon chip, placed in a static magnetic field," he said.

What Laucht and colleagues did was push this further.

"We have now implemented a new way to encode the information: we have subjected the atom to a very strong, continuously oscillating electromagnetic field at microwave frequencies, and thus we have 'redefined' the quantum bit as the orientation of the spin with respect to the microwave field."

The results are striking. Since the electromagnetic field steadily oscillates at a very high frequency, any noise or disturbance at a different frequency results in a zero net effect.

Researchers achieved an improvement by a factor of 10 in the time span during which a quantum superposition can be preserved.

Specifically, they measured a dephasing time of T2*=2.4 milliseconds -- a result that is 10-fold better than the standard qubit.

This result allows many more operations to be performed within the time span during which the delicate quantum information is safely preserved.

"This new 'dressed qubit' can be controlled in a variety of ways that would be impractical with an 'undressed qubit'," added Morello.

"For example, it can be controlled by simply modulating the frequency of the microwave field, just like in an FM radio. The undressed qubit, instead, requires turning the amplitude of the control fields on and off like an AM radio.

"In some sense, this is why the dressed qubit is more immune to noise: the quantum information is controlled by the frequency, which is rock-solid, whereas the amplitude can be more easily affected by external noise".

Since the device is built upon standard silicon technology, this result paves the way to the construction of powerful and reliable quantum processors based upon the same fabrication process already used for today's computers.

The UNSW team leads the world in developing quantum computing in silicon, and Morello's team is part of the consortium of UNSW researchers who have struck a A$70 million deal between UNSW, the researchers, business and the Australian government to develop a prototype silicon quantum integrated circuit -- the first step in building the world's first quantum computer in silicon.

A functional quantum computer will allow massive increases in speed and efficiency for certain computing tasks -- even when compared with today's fastest silicon-based classical computers.

In a number of key areas such as searching large databases; solving complicated sets of equations and modeling atomic systems such as biological molecules and drugs they will far surpass today's computers.

They will also be enormously useful in the finance and healthcare industries, and for government, security and defense organizations.

Quantum computers could identify and develop new medicines by greatly accelerating the computer-aided design of pharmaceutical compounds (and minimizing lengthy trial and error testing).

They can also develop new, lighter and stronger materials spanning consumer electronics to aircraft. They will also make possible new types of computational applications and solutions that are beyond our ability to foresee.

©2018 Chinatopix All rights reserved. Do not reproduce without permission


Sign up for our free weekly newsletter for the latest in-depth coverage!

Real Time Analytics