CHINA TOPIX

03/28/2024 06:11:14 pm

Make CT Your Homepage

World's Smallest Magnifying Glass can see Chemical Bonds between Atoms

Wee small

(Photo : NanoPhotonics Cambridge/Bart deNijs) An illustrration depicting nanophotonics.

Researchers led by the University of Cambridge have created the world's smallest magnifying glass that focuses light a billion times more tightly, down to the scale of single atoms.

Along with colleagues from Spain, the team used highly conductive gold nanoparticles to make the world's tiniest optical cavity, so small that only a single molecule can fit within it.

Like Us on Facebook

The cavity -- called a "pico-cavity" by the researchers -- consists of a bump in a gold nanostructure the size of a single atom, and confines light to less than a billionth of a meter.

The results (reported in the journal Science) open new ways to study the interaction of light and matter, including the possibility of making the molecules in the cavity undergo new sorts of chemical reactions that might enable the development of entirely new types of sensors.

The findings have the potential to open a whole new field of light-catalyzed chemical reactions, allowing complex molecules to be built from smaller components.

There's also the possibility for developing new opto-mechanical data storage devices that allow information to be written and read by light and stored in the form of molecular vibrations.

Building nanostructures with single atom control was extremely challenging, said the researchers.

"We had to cool our samples to -260°C in order to freeze the scurrying gold atoms," said Felix Benz, lead author of the study.

Researchers shone laser light on the sample to build the pico-cavities, allowing them to watch single atom movement in real time.

"Our models suggested that individual atoms sticking out might act as tiny lightning rods, but focusing light instead of electricity," said Professor Javier Aizpurua from the Center for Materials Physics in San Sebastian, who led the theoretical section of this work.

"Even single gold atoms behave just like tiny metallic ball bearings in our experiments, with conducting electrons roaming around, which is very different from their quantum life where electrons are bound to their nucleus," according to Professor Jeremy Baumberg of the NanoPhotonics Centre at Cambridge's Cavendish Laboratory, who led the research.

Real Time Analytics